Podcast 147 - Otters and Sharks and Wolves Oh My


The gang returns to one of their favorite pet topics, food! This week, we discuss two papers that investigate what different animals are eating. Specifically, we focus on a paper that uses fossil data to infer the feeding strategies of extinct giant otters, and another paper that seeks to answer the question of whether or not modern bonnethead sharks are omnivorous. Also, Amanda finds her spirit anime character, James workshops new ideas for the podcast at the worst possible time, Curt leads us on a strange aside about bears and wolves, and we all work together to invent the perfect animal.

Up-Goer Five (Curt Edition)

Our friends talk about what animals eat. First they talk about long four legged animals with hair who have high voices. Some of these long four legged animals from a long time ago were really really big. When we study the hard parts of these really big, long four legged animals, we find that they can break open other really hard things in order to eat them. When we look at the hard parts of living long, four legged animals with high voices, we find that these old big long four legged animals were probably able to break things in different ways than the living animals just because they were so very very big. This shows that long four legged animals in the past could fill different jobs in the world than the living, much smaller four legged animals.

Second, the friends look at animals that spend all their time in the water and have lots of inside parts that do not break. These water animals are often thought to eat other animals only. However, these water animals have been shown to eat green things that make food from the sun. People did not know if these water animals meant to eat the green things that make food from the sun, or if they did not mean to. Some people took some of these water animals and had these water animals eat a lot of green things that make food from the sun. The water animals got bigger, and seemed to do well when they were made to eat only these green things. The people decided that this meant the water animals meant to eat the green things and that meant that not all water animals with inside parts that do not break eat only other animals.


 Tseng, Z. Jack, et al. "Feeding capability in the extinct giant Siamogale melilutra and comparative mandibular biomechanics of living Lutrinae." Scientific Reports 7.1 (2017): 15225. 

 Leigh, Samantha C., Yannis P. Papastamatiou, and Donovan P. German. "Seagrass digestion by a notorious ‘carnivore’." Proc. R. Soc. B 285.1886 (2018): 20181583. 

Podcast 146 - Not All Insects Are in Amber


The gang discusses two papers that look at our amazing fossil insect record. One of these studies looks at preserved fly pupae and shows some unexpected evidence of parasitism. The other study tries to understand the properties of tree sap that allows amber to preserve such amazingly detailed fossil insects. Meanwhile, Amanda has a weather catastrophe, Curt can do better, and James is a dream warrior.

Up-Goer Five (Amanda Edition):

 Today our friends talk about very small things with six legs that are often hard to find after they die. These very small things with six legs might get stuck in tree stuff and die. That is where we will usually find them. The first paper finds very small things with six legs inside the changing space of other even smaller very small things with six legs. These very small things with six legs would break into the changing space of the other even smaller very small things with six legs and eat them. We don't know if they ate them slowly or fast, but they ate them while they were not dead. This is not usual to find after things die so it is very good to find. The other paper talks about how very small things things with six legs get stuck in tree stuff and die. The idea is that if they dry out first maybe they are more probably not going away after getting stuck in tree stuff and dying. This paper says no, drying out will make these very small things with six legs go away more after they get stuck in tree stuff and die. They also look at the very very very small things inside the very small things with six legs and say that these very very very small things help make the very small things with six legs go away. If we make the very very very small things go away with doctor stuff then the very small things with six legs are going to stay when they get stuck in tree stuff and die. 


 van de Kamp, Thomas, et al. "Parasitoid biology preserved in mineralized fossils." Nature communications 9.1 (2018): 3325. 

 McCoy, Victoria E., et al. "Unlocking preservation bias in the amber insect fossil record through experimental decay." PloS one 13.4 (2018): e0195482. 

Podcast 145 - Bones and Hard Parts


The gang discusses two papers that deal with the origins of biomineralization (how living things make hard minerals to serve as skeletal structures). Specifically, we look at one paper focused on the origins of bone and a second paper focusing on some of the first instances of biomineralization in the fossil record. Also, Curt keeps a promise, James knows how to make a good impression on the neighborhood, and Amanda gets blamed for the actions of her cats.

Up-Goer Five (Amanda Edition):

 Today our friends talk about things that have hard parts before there were supposed to be hard parts and how important hard parts that are inside of animals first was made. Very early animals that have hard parts before there were supposed to be hard parts are the same as things that do not hard parts. This paper says that it is because the place that they lived had too much of stuff that makes parts hard. These animals took the stuff out of water not because they wanted to, then they had to make it go away or they would die. So they made parts of their body hard. Later on making parts of the body hard was really important and they started doing it more and more even if there wasn't too much stuff in the water that makes parts hard. The second paper talks about how a weird type of hard part that is one of the important hard parts inside animals came to be. Some people think it is a new type of hard part inside of animals, but others say it is not. It turns out it is actually not really new like we thought but is actually a type of important hard part inside animals that is still around today. It is just a type that is not around today anymore.  


Wood, Rachel, Andrey Yu Ivantsov, and Andrey Yu Zhuravlev. "First macrobiota biomineralization was environmentally triggered." Proc. R. Soc. B 284.1851 (2017): 20170059. 

 Keating, Joseph N., et al. "The nature of aspidin and the evolutionary origin of bone." Nature ecology & evolution(2018): 1. 

Podcast 144 - Return to the Sea


The gang discusses two papers that investigate the ways that tetrapods return to the sea. It's another opportunity for Amanda talk at length about her favorite topic, CONVERGENCE. Meanwhile, James has ideas about "moral fortitude", Curt makes slightly off references to 80s films, Amanda exercises her desire to be deadly, and Mr. Jowls has some opinions that need to be heard.


Up-Goer Five (Amanda Edition):


 Today our friends talk about animals with four feet that go back to the water. This is just a reason for our friends to talk about why some animals that are not very close like brothers look very much the same. The first paper says that since the start of the time of large animals with no hair and big teeth, there are more animals with four feet that go back to the water. Many of the animals with four feet that go back to the water look so very the same it is sometimes hard to tell that they are different if you do not look close. They talk about things that make these animals with four feet that go back to the water better for being in water, and how whole big groups of animals do not all change the same, but small groups change faster or more than others. They also talk about how and why these animals are changing. The second paper is about an animal with four feet and a long neck that goes back to the water. It has funny teeth and did not eat very small things like the largest animals living today that have no teeth, even though some things about this animal with four feet and a long neck that goes back to the water that might make you think that they ate very small things. It also has very heavy inside hard parts like big heavy water animals that get hit by people in wood things that go fast. This makes it heavy in water so it does not stay on top of the water but goes down to the bottom. This is how it ate food maybe.   


de Miguel Chaves, Carlos, Francisco Ortega, and Adán Pérez-García. "New highly pachyostotic nothosauroid interpreted as a filter-feeding Triassic marine reptile." Biology Letters 14.8 (2018): 20180130. 

 Kelley, Neil P., and Nicholas D. Pyenson. "Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene." Science 348.6232 (2015): aaa3716. 

Podcast 143 - Squamate Talk


Well, it has finally come to this. After almost 150 episodes under our belts, we've finally produced a podcast where almost no one read any of the papers. This episode was supposed to be about squamate (lizards and snakes) evolution. In particular, we were supposed to look at two papers that tried to determine when squamates must have first diversified. And... we kind of accomplish that. Meanwhile, James shares his weak points, Amanda demonstrates a super power, and Curt laments falling asleep on the couch being the only person to read these papers. We swear the next one will be better.... maybe.


Up-Goer Five (Curt Edition):

Our friends were supposed to talk about these papers that they read. However, they didn't read these papers and so they spend some of the time trying make it up as they go along. The papers that the friends were supposed to read were about cold, cute things with dry skin and four legs (most of the time). Both of these papers suggest that these cold, cute things probably came about well before we thought they did. In fact, we probably had the first cold, cute things just around or before the time a really bad thing happened that hurt all living things around the world. It was the worst of the bad things to have ever happened. These papers suggest that these cold, cute things might have done alright during these really bad times, and that may be the reason why there are so many cute, cold things around the world today.



 Tałanda, Mateusz. "An exceptionally preserved Jurassic skink suggests lizard diversification preceded fragmentation of Pangaea." Palaeontology (2018). 

 Simões, Tiago R., et al. "The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps." Nature 557.7707 (2018): 706. 

Podcast 142 - The LDG


The gang discusses two papers that look at the origins of the latitudinal diversity gradient, the tendency for higher species diversity in the tropics and lower diversity closer to the poles. Specifically, these studies use comprehensive phylogenetic analyses of modern taxa to try and determine if the current diversity gradient is caused by increased speciation or decreased extinction at the equator. Meanwhile, Amanda shares diseases with her cat, James decides to "treat" himself to a Lime-A-Rita, and Curt just re-enacts scenes from other media.


Up-Goer Five (James Edition):

The group looks at two papers that are interested in where animals live. They are looking at a well known thing where more animals live near the middle of the world than at either end. However, it is not clear whether there are more animals in the middle of the world because they have been there longer and so the number of animals has just built up over time, or whether animals in these areas make more types of animals more quickly.

The first study looks at animals that have no legs and live in the water that you can not drink and breath water. This study finds that animals that live in the middle of the world actually make other animals slower than animals that live at either end of the world do, so the reason there are more animals in the middle of the world is probably because they have been there longer. The second study looks at animals with hard outer skin that have six legs and live in big families. This study finds that there is no change across the world in how quickly these animals make more animals, which is different from the first study. However, this does mean that the reason there are more animals in the middle of the world is because they have been there longer, so this agrees with the first study!



 Economo, Evan P., et al. "Macroecology and macroevolution of the latitudinal diversity gradient in ants." Nature communications 9.1 (2018): 1778. 

 Rabosky, Daniel L., et al. "An inverse latitudinal gradient in speciation rate for marine fishes." Nature (2018): 1. 

Podcast 141 - Save the Weasels


The gang discusses two papers that look at the effects of climate change on cold adapted species, as well as the possibility of evolutionary rescue as a means of preserving this biodiversity. Also, it gives them all a great excuse to just talk about weasels (and somehow badgers as well). Meanwhile, Curt invents alternative Nintendo canon, James wants a giant robot spider body, and Amanda invents personalities for pictures of weasels.


Up-Goer Five (Amanda Edition):


Today our friends talk about how when things get warm it is bad for lots of things that live. Our friends look at long things with hair that need to eat more. These long things with hair that need to eat more are either dark or white. They are white when it is cold and dark when it is warm and that helps them hide. But with things turning more warm every year, it is getting too different for these long things with hair that need to eat more. Now sometimes they change from dark to white when it is still too warm, or, more often, they are still white when it is time to be dark. One paper says that this means the long things with hair that need to eat more get eaten more often by big things with big teeth and pointed fingers and hair, or by big things that fly that have no teeth and pointed fingers and no hair. The other paper says that maybe we need to look at some parts of the world that no one cares about and save them for animals, because these are places where the long things with hair that need to eat more that change color from dark to white and back to dark may be able to live.



 Atmeh, Kamal, Anna Andruszkiewicz, and Karol Zub. "Climate change is affecting mortality of weasels due to camouflage mismatch." Scientific reports 8.1 (2018): 7648. 

 Mills, L. Scott, et al. "Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change." Science 359.6379 (2018): 1033-1036. 

Podcast 140 - Staying on Ecomorphic Brand


The gang returns to a favorite topic, the link between morphology and ecology. Specifically, they look at two studies that use the morphology of ammonites and early fish as a proxy for ecological complexity. Also, James enjoy controlling giant robots, Curt considers the impact of branding, and Amanda tries a new 14% beer with all of the expected consequences. So enjoy as we get completely sidetracked talking about feet, eating zoras, how Amanda is secretly Tien from Dragon Ball, Warhammer 40k, and Deadpool. So, it’s one of those podcasts. <EDITOR’S NOTE: Actual science talk starts at roughly 16 minutes in>


Up-Goer Five (Curt Edition):

Our friends talk about two papers that look at the way things look and how that changes what you can do to live. The first paper looks at things with long arms and hard covers that move through the water. The paper talks about how old things with long arms are the same and different to things with long arms that live today. It also looks at how these things with long arms change how they look and what they do as they get older. The paper shows that the old things often changed how they looked and do very different things as they got older. Also, the older things with long arms are doing things that are very different from the new things with long arms.

The next paper talks about other things that move through water and are good to eat. It looks at the mouths of these things that are good to eat to see if the mouths have become more different over time. Some people think that the mouths might have become different very early on, while other people think the mouths slowly got more different over time. This paper says that the mouths in the past were probably not as different as the mouths today, since a new group of things that are good to eat has appeared that have very very different mouths.



 Walton, Sonny A., and Dieter Korn. "An ecomorphospace for the Ammonoidea." Paleobiology 44.2 (2018): 273-289. 

 Hill, Jennifer J., et al. "Evolution of jaw disparity in fishes." Palaeontology (2018). 

Podcast 139 - Whales and Birds Suck


The gang discusses two papers on suction feeding among tetrapods, the process by which animals take in water to pull food into their mouths. Specifically they look at two papers showing suction feeding strategies in fossil whales and in modern auks. Meanwhile, Amanda finds new ways to become ill, James finds new things to get angry about, and Curt makes new, very unfortunate deviant art searches.


Up-Goer Five (James Edition):

The group look at two papers that deal with animals that suck. The first paper is looking at how animals with hair that live in the place where water can not be drunk got big. One of the thing that these really big animals share is that they eat lots of little food all at once by pushing it through a brush, and it is thought that they got big because they could push so much food through their brush at once that they could eat lots and lots. The study looks at the hard parts of a really old hair covered water animal that got very big, but it does not have the brush and so could not eat lots of small food. Instead, it seems like the animal would have got its food by sucking, and ate lots of food that was not too big but not too small instead by sucking it into their mouth and then pushing the water out. This shows that these animals could get big without pushing lots of small food through a brush, and that the brush pushing eating might have come from sucking first.

The second paper takes small animals that can fly and live on the big water that you can not drink and sees how they ate. These animals eat very small animals as their food and people have looked inside them and found out that they would need to eat a lot of these small animals in order to live. It was said that these flying animals must have eaten lots of small animals at once by pushing them through a small space like a brush like the really big animals that live if the big water you can not drink do, however no one has ever seen these flying animals eat. The study takes some of these flying animals and keeps them in a room with lots of water for a while that is full of their food and watches how they eat. It turns out that these flying animals suck too, and they suck up their small food by seeing them and sucking them in one or a few at a time. This sucking is just like the sucking that the old really big animal with hair and no legs would have done. This also suggests that the flying animals do not need to eat quite as much as the people that looked inside them thought.



Enstipp, Manfred R., et al. "Almost like a whale–First evidence of suction-feeding in a seabird." Journal of Experimental Biology (2018): jeb-182170. 

 Fordyce, R. Ewan, and Felix G. Marx. "Gigantism precedes filter feeding in baleen whale evolution." Current Biology(2018). 

Podcast 138 - Cambrian Food


The gang discuss two papers that use various lines of evidence to try to determine what Cambrian animals (particularly trilobites) might have eaten. Which of these animals were detritivores or coprophagous, and which animals might have been active predators? Meanwhile, James tries to keep a schedule, Amanda finds a way to time travel 10 minutes, and Curt fights against nature.


Up-Goer Five (Amanda Edition):

Today our friends talk about very old things with no inside hard bits that ate shit and also how stomachs grow in cute round hard animals with lots of parts. The papers look at very old times and how all things are put together living in the same place and how they all work together in this place and time. At first our friends talk about pieces of shit that show how very old things with no inside hard bits ate food and how that means they fit into this place and time. The shit is found in the ends of where the very old things with no inside hard bits lived. There are other animals found with the shit that might be eating the shit or also might be part of the shit, meaning that the very old things with no inside hard bits ate them. They also say that these pieces of shit that have a different kind of animal that has not been well known until not long ago means that these different animals were more like a good-to-eat animal than a not-good-to-eat animal. One of our friends falls asleep but it is not because the paper is not fun. Then our friends talk about how the head-stomach gets bigger in these cute round animals with lots of parts. They think a bigger head-stomach means that these cute round animals with lots of parts ate other animals and not just stuff on the ground. 



Lerosey‐Aubril, Rudy, and John S. Peel. "Gut evolution in early Cambrian trilobites and the origin of predation on infaunal macroinvertebrates: evidence from muscle scars in Mesolenellus." Palaeontology (2018). 

 Kimmig, Julien, and Brian R. Pratt. "Coprolites in the Ravens Throat River LAGERSTÄTTE of Northwestern Canada: Implications for the Middle Cambrian Food Web." Palaios 33.4 (2018): 125-140.